Avis de Soutenance
Monsieur James DARK
Soutiendra publiquement ses travaux de thèse intitulés :
« Multiphysics tritium transport simulations of the WCLL breeding blanket for DEMO»
Soutenance prévue le lundi 14 octobre 2024 à 14h
Lieu : CEA – IRFM, salle René Gravier, Bâtiment 506
Et par lien Teams : PhD defence James Dark | Microsoft Teams | Meetup-Join
Composition du jury :
Raffaella TESTONI |
Politecnico di Torino |
Rapportrice |
Frédéric CHRISTIEN |
Mines Saint-Etienne |
Rapporteur |
Sara FERRY |
Massachusetts Institute of Technology |
Examinatrice |
Steven VAN BOXEL |
UKAEA |
Examinateur |
Marie-France BARTHE |
CNRS |
Présidente du jury |
Etienne HODILLE |
IRFM, CEA |
Encadrant de thèse |
Jonathan MOUGENOT |
Univ. Sorbonne Paris Nord |
Encadrant de thèse |
Yann CHARLES |
Univ. Sorbonne Paris Nord |
Directeur de thèse |
Abstract
This work presents the development of a multiphysics tritium transport model in the Water-Cooled Lithium Lead (WCLL) breeding blanket, designed using FESTIM to evaluate tritium retention and permeation influenced by heat transfer and fluid mechanics. The developed model aims to estimate inventory buildups within structural materials and quantify permeation into cooling channels. Utilising the Finite Element Method (FEM), the model integrates data from neutronics simulations and accounts for complex fluid flow and heat transfer. Parametric studies assess the influence of heat transfer coefficients, tritium sources, and solubility in PbLi. The work emphasises the impact of tritium trapping mechanisms, increasing tritium inventories in the breeding zone pipes by 80 % and in the first wall by tenfold. A new model, parameterised for tungsten, accounts for the temporal evolution of trap concentrations due to self-damage and thermal annealing, which can be used to estimate the impact of neutron damage on tritium transport in plasma-facing components. Results suggest the tritium inventory in the first wall could increase 700 times after six days of exposure compared to the undamaged case. Methodologies are outlined to modes tritium permeation barriers implicitly for component scale FEM modelling. The developed models and methodologies provide valuable insights for designing and optimising future fusion reactors, ensuring more efficient and sustainable tritium management in breeding blanket systems.
Keywords
DEMO, Breeding blankets, WCLL, Tritium transport, permeation, neutron damage