Characterization of a compact LaBr$_3$ detector with Silicon photomultipliers at high 14 MeV neutron fluxes

D. Rigamonti,1,2 M. Nocente,1,2 M. Tardocchi,2 L. Giacomelli,2 M. Angelone,2 A. Broslawski,4 C. Cazzaniga,5 J. Figueiredo,6,7 G. Gorini,1,2 V. Kiptili,9 S. Korolczuk,4 A. Murari,1,2 M. Pillon,3 I. Zychor,4 and JET. Contributors* EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK

1Department of Physics “G. Occhialini”, Università degli Studi di Milano-Bicocca, Milano, Italy
2ENEA C.R. Frascati (ENEA) / Via E. Fermi 45, 00044 Frascati, Italy
3CST Facility. Science and Technology. Facility Council, Rutherford Appleton Laboratory (RAL), Oxford OX11 0QX, United Kingdom
4EUROfusion, University of Coimbra (UL), Av. 3 de Maio, 3030-290 Coimbra, Portugal
5Centro Studi RFX, CEM, INFN, Universidade de Lisboa, Lisboa, Portugal
6Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
7University of Padova, via Marzolo 8, 35131 Padova, Italy
8Centrales R&D, EDF, 92190 Cuges-les-écrins, France
9Electrical Engineering and Computer Science, Michigan State University, East Lansing, MI, USA

Aim of the work

In this work we present the response of the LaBr$_3$(Ce) crystal to 14 MeV neutron irradiation measured at the Frascati Neutron Generator (FNG) together with a comparison with the MCNP simulations.

Furthermore, the neutron response of the SiPM has been also assessed after a neutron irradiation up to about 1013 n/cm2.

Gamma-ray emission in fusion plasmas

- Gamma-ray spectroscopy is a plasma diagnostic technique investigating the behaviour of fast ions in high temperature fusion plasmas.
- Gamma-ray emission in thermonuclear plasmas is mainly due to reactions between fast particles and fuel ions or impurities.
- The Gamma Camera installed at JET consists of a vertical and a horizontal camera made of 9 and 10 collimated lines of sight, respectively.
- Measurements along this multiple set of channels allow the tomographic reconstruction of the gamma emission source in the plasma.
- The detection of the 4.44 MeV γ-rays from the 9Be(c,n) reaction gives information on alpha particles in deuterium-tritium (DT) plasmas.

The GCU LaBr$_3$ gamma-ray spectrometer

- SiPMs represent a good alternative to PMT: high internal gain, insensitivity to magnetic field and extremely compact size.
- Read-out electronic circuit was ad hoc built to combine the high counting rate capability with the good energy resolution.
- A proper pole zero cancellation network able to shorten the output signal to 120 ns has been implemented allowing spectroscopy at MHz count rate [1, 2].
- Energy resolution $5\% \div 0.661$ MeV

SiPM resistance to neutron flux

- It is well known that silicon devices can get damage by neutrons.
- We need to investigate the neutron damage in our SiPMs in view of the DT JET campaign, in terms of effects on the PHS and on the Dark Current.
- Estimated neutron fluxes for full DT plasmas are:
 - 10^{2} n/cm2 on the central channel of the vertical camera (VC)
 - 10^{3} n/cm2 on the central channel of the horizontal camera (HC)
- Φ (function of $x=a$ to $x=b$) Dark current partially decrease in few days
- We reached fluences up to 4×10^{16} n/cm2 for the HC
 40002 of full power DT for the VC
- We can still clearly observe the peaks from 60Co source after $F=1.5 \times 10^{16}$ n/cm2
- No significant differences are shown in the pulse height spectrum (PHS).
- Still a good energy resolution has been obtained.

Conclusions

- The effect of 14 MeV neutrons on both LaBr$_3$ crystal and the SiPM was measured.
- The GCU LaBr$_3$ has about 30% detection efficiency to 14 MeV neutrons.
- The neutron induced background under the 4.44 MeV peak from 9Be(c,n)12C reaction is 1/300 of that at low gamma-ray energies.
- 14 MeV neutrons have some effects on the SiPM (Φ_{n} increase), but we can still measure a spectrum from a 60Co source with good energy resolution.
- The SiPM self recovery (Φ_{n} decrease) to some extent over a period of a few days

References

2. [Figueiredo et al., “Gamma-ray spectroscopy of neutron counting with a compact LaBr$_3$ crystal and silicon photomultipliers for fusion plasmas applications.” Rev. Sci. Instrum. 81, 075114 (2010)].

Corresponding author: davide.rigamonti@mil.infn.it

*The work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 823033. This view and opinions expressed herein do not necessarily reflect those of the European Commission.